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Abstract. Frisch scheme defines the whole set of possible sclutions of linear rela-
tions for numerical series in general case. This paper presents a modification to the
Frisch scheme made for the following special case: some series of numbers are noise-
less — independent variables; and the remaining are noisy — dependent varables.
Special results from the set defined by modified Frisch scheme, which represent
potential solution for prediction are analysed. The result obtained on unweighted
principal components of the matrix of covariance of explained part of variance of
dependent variables, represent the best solution for prediction.
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1. INTRODUCTION

The solution of the problem of identifying the linear relations on the basis of
a finite data set in the presence of noise is not unique, which makes the problem
conceptually very complex. The existing approaches (principal components analy-
sis; factor analysis; linear regressions, etc.) lead to unique solutions based on the
assumptions involved (regression analysis: noise is allocated to a single (depen-
dent) variable; orthogonal regression: errors are evenly distributed to all variables,
etc.). Determining the set of all possible solutions in both the solution space and
error space has been in the focus of research attention and is mainly based on the
so called Frisch scheme [1]. In this paper particular solutions in general Frisch
scheme, which are of interest for prediction, are considered.

This paper provides an analysis of identifying the linear relations between
series of numbers in the following special case: some series are exact — independent.
variables; and some are in the presence of noise — dependent variables. The set of
all these possible solutions of interest i1s defined by modified Frisch scheme and is
actually a subset determined by original Frisch scheme.

The stated modifications to the general Frisch scheme have been made in or-
der to permit the implementation of a new procedure for modelling the dynamic
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processes described by time series in case when the time series are with no obser-
vation error and the complete error is taken to result from the model, so the model
selection procedure reduces to the prediction error minimization. In this paper are
considered several special solutions from the set defined by modified Frisch scheme,
with intention to determine the best solution for prediction.

Section 2 of the paper gives a survey of known results relating to the Frisch
scheme. In Section 3 particular solutions from general Frisch scheme are analyzed,
which are of interest for estimation of random vectors. Section 4 defines the mod-
ified Frisch scheme. In Section 5 particular solutions from modified Frisch scheme

of interest for prediction are analyzed.

2. FRISCH SCHEME

Determining the linear relations between series of numbers, in a general case,
1s not unique, because an approximation is involved. The solution to be obtained
depends on a desired property of approximation (formalized through a criterion
function accepted). The entire possible set of solutions is also of interest. We
present here the known scheme that should be satisfied by all potential solutions [1].

2.1. EQUIVALENCE OF LINEAR RELATIONS

The problem of finding linear dependencies between observed series is equiv-
alent to the problem of finding the linear dependence between the columns of the
covariance matrix of analyzed series [1]. The following notation will be used here:
X an N x n matrix of N observations of n zero-mean series, & an n X n matrix of
covariance of series X.

2.2. FUNDAMENTAL ASSUMPTIONS (FRISCH SCHEME)

The basic assumptions to be satisfied by the analyzed sets X , 1.e. by their
covariance matrix, are:

ASSUMPTION 1 cor(X) = 0. (2.1)

(where:. cor = corang; cor(X) = n — rang(X)).

It says that, because of the presence of noise, there exist no trivial linear
solutions.

ASSUMPTION 2: Noise 1s additive.
X=X+¢ (2.2)

where: X is the matrix X after noise elimination and £ a noise matrix. All series
of numbers are assumed to be noisy.

ASSUMPTION 3: The columns of the noise matriz £ are independent of the columns
of the exact matriz X .
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As a consequence of Assumptions 2 and 3:
E=t+% (2.3)

where ¥ is a covariance matrix of series X and ¥ a covariance matrix of noise £.

ASSUMPTION 4: The noise covariance matriz, ¥, 15 a nonnegative definite (NND)
diagonal mairiz.

YWhite noise 1s assumed.

2.3. PROBLEM STATEMENT

The problem of finding all possible solutions that satisfy the general Frisch
scheme can be defined in the noise space and solution space [2].

2.3.1. Problem Formulation in Noisy Space

An nxn symmetrical, PD matrix ¥ with cor(X) = 0 is given. Find all diagonal,
NND matrices ¥ such that:

- F =

. =X -%.
2. £ is NND, and
3. cor(X) is maximum,.

A vector a 1s a solution vector if it satisfies the following relation:

Ya=(E-X)a=0. (2.4)

2.3.2. Problem formulation in solution space

An n x n symmetrical, PD matrix ¥ with cor(¥) = 0 is given. Find all vectors
a such that:
1. A NND, diagonal £ exists such that La = L a (2.5)
2. £ =X -Xis NND, and

3. cor(X) is maximum.

3. IMPORTANT SPECIAL SOLUTIONS WITHIN THE FRISCH SCHEME

This Section gives the analysis of special solutions in the set defined by the
general Frisch scheme, which are of special importance for the prediction of de-
pendent variables. As all the special solutions of interest reduce to projecting the
analyzed random vector X onto principal components, we will first present a brief
survey of known results.
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3.1. THE PRrRINcCIPAL COMPONENTS OF A RANDOM VECTOR

For a random zero-mean vector X = (z1,Z2,...,2n), Span(X) denotes the
Hilbert space of all random variables that are linear combinations of vectors from
{1"11:21 S :J:ﬂ}-

x| X denotes the linear estimator of the minimum variance of zero-mean ran-
dom vector , on the basis of zero-mean random vector X. This is also an orthogo-
nal projection of = onto subspace Span(X). On the basis of elementary estimation

theory, [3]:
z|X = X[E{XTX} 'E{XTz}. (3.1)

3.1.1. Karhunen-Loeve Decomposition of Random Veclor

One of the orthonormal basis for space Span(X) is the vector:

Z =XUS™! (3.2a)

where:
T =USUT = U, STUT + U,S52U7 (3.2b)
is the decomposition by the eigenvectors of covariance matrix £ = E(XT X).

The presentation of the random vector in this basis is referred to as the
Karhunen-Loeve decomposition of the random vector and reads:

X=USZ =Y oruz. (3.3)

k=1

As the covariance matrix X is symmetric and nonnegative definite, its eigen
decomposition 1s identical to the singular value decomposition (SVD). Therefore,
if the eigenvalues are arranged into a decreasing order ¢y > 05 > ... > o, then

the principal components of ¥ are:
P
U, STUT =) ofuruf. (3.4)
k=1

Principal components of matrix X also represent the principal components of
the random vector X. The importance of the principal directions lies in that they
provide optimum data compression of the random vector.

3.2. THE OPTIMAL SOLUTION IN PREDICTIVE EFFICIENCY MEANS

That solution a from the general Frisch scheme is sought for which the predic-
tion error, expressed in terms of the following norm, is minimum:

b vl a2
NE(X — X|Xa)||e
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(where || - || is the Frobenius norm [4] defined as ||A|[3 = tr ATA) or, in a more
general case, that, matrix solution A (matrix n x p, (p < n)) is sought which
minimizes the following norm:

HECX = X1X Al
where, on the basis of the elementary estimation theory [3]:
X|IXA=XAE{ATXTXA)'E{ATXT X)

= XA[ATZA) ' ATE. (3.5)
The following result is known [5]:
n
Minimum ||[E(X - X|XA)|[p= ) of (3.6)
k=p+1

and is achieved for:
44==(}h4

where: U are the p first principal components obtained by the SVD of covariance
matrix ¥ and .4 — an arbitrary invertible p X p matrix.

Therefore, the optimal estimate of X based on XA, X|X A, in the sense of a
minimum prediction error, reads:

P
X|IXA=) orwzy (3.8)
k=1
i.e., the projection of the random vector X onto the p principal components.

The approximation of the random vector X, optimal in the sense of prediction
efficiency maximization is achieved by principal components.

3.3. THE OPTIMAL SOLUTION IN CORRELATION MAXIMIZES MEANS

The solution a, optimal with respect to maximizing the correlation from the
set of solutions defined by the Frisch scheme, maximizes the following criterion

function: )
||E{XTXG}||F

subject to the constraint:
ata=1. (3.9)

In the matrix case: the optimal solution A = ||aja; ... a,|| is obtained by maximiz-
ing the following criterion function:

IE{XTX A}||p

subject to the constraint:
(a) ATA=1,. (3.10a)
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the components of matrix A are orthogonal, or:
(b) ATEA=1,. (3.10b)

The components of X A are uncorrelated and have a unit variance; where: X 1s the
covariance matrix of random vector X.

The solution of the problem stated in this way is [5]:
A=UiA, (3.11)

where: U, are the p first principal components obtained by the SVD of covariance
matrix X.

In case (a):
A=1, (3.12a)
XA=(0121,0229,... ,0p2p). (3.13a)

In case (b):
A =85 (3.12b)
XA=(z2,22,... ,2p). (3.13b)

The approximation of random vector X, optimal in the sense of correlation maxi-
mization, is also achieved by the principal components.

3.4. THE OPTIMAL SOLUTION IN INFORMATION MAXIMIZES MEANS

We analyze here the case when X 1s a Gaussian random vector. The problem is
to find the solution from the set defined by the Frisch scheme having the property of
self-information maximization. For the Gaussian random vector X, self-information

1s defined as:
0.5log(det(%))

where:
Y =E(XTX).

Thus, the maximization of the information contained in Xa is formally achieved
by maximizing the following criterion function:

0.5 x log(a™Ta)

subject to constraint:
a“a=1.

In the matrix case, when A = |[aja;...ap|| and (p < n), the optimization problem
reduces to:

max 0.5log(det(ATTA))

subject to constraint:
ATA =1, (3.14)
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The solution of the problem stated in this way is [6]:
A=U, (3.15)

where: U, are the p first principal components obtained by SVD of covariance
matrix .

The optimal approximation of the random vector X reads:
AA= (0‘1:1,5’222,... ,apzp). (316)

The maximum self-information in approximation of the Gaussian random vector X
18:

p
0.5 log(det(ATSA)) = ) " log . (3.17)
k=1

The approximation of the random Gaussian vector X, optimal in the sense of
information contents maximization, is also achieved by the principal components.

3.5. COMMENT

The Frisch scheme defines all the possible solutions of interest for approximat-

ing the random vector X. By seeking for the solutions with the following properties
that are of special interest for the modelling of random vectors:

(a) prediction error minimization,
(b) correlation maximization and
(¢) information contents maximization,

one obtains the same result. All the three stated properties are achieved through
approximation of the random vector by the principal components of the covariance
matrix ¥ of random vector X.

4. MODIFIED FRISCH SCHEME

We analyzed here the case when we distinguish the series of numbers between
each other with respect to noise allocation. Some series are in the presence of noise
and are treated as dependent variables, whereas the remaining series are accurate
and are treated as independent variables in potential relations, [7].

Grouping of the series into noiseless and noisy series i1s performed as follows:
X = ”‘Xl Xz”, (4'1)

where: X is an N x m matrix of N observations of m quantities, X; is an N x m,
matrix of N observations of m| noiseless series, and X7 1s an N X m» matrix N
observations of ms noisy series.

The series after noise elimination are denoted as follows:

X =||X1 Xql, (4.2)
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where: X is an N x m matrix X after noise elimination, and X+ is an N x mgy
matrix X, after noise elimination.

Matrix of noise is denoted as follows:

E =110 &, (4.3)

where: £ 1s a N x m noise matrix of matrix X and & is a N x m4 noise matrix of
matrix Xs.

The observed matrix X can be decomposed into an “accurate” part and noise:

X=X+E&=|X1 X2|| +]/0 &]. (4.4)

This decomposition, just as the one in the general case considered in Section 2. is
not unique and only the decompositions satisfying the Frisch scheme are of interest.

A vector a; 1s a vector solution if it satisfies:

Xa; =0 or (4.5a)
(X = &)ai =0. (4.5b)
If there are k different solutions, the following can be written:
XA =0, or (4.6a)
(X =8)A =0, (4.6b)

where:

A is an m x k£ matrix of k solutions of the potential linear dependencies between
the series analyzed,
A

Aj is an m; X k matrix of the parameters of k solutions that correspond to the
noiseless series, (k < m,);

A, is an moy X k matrix of the parameters of k solutions that correspond to the
noisy series, (k < ms).

The following can be written for the product X A in the case analyzed:

XA=XA+EA=|X; Xy 31

I s

By using the covariance matrix of the analyzed observed series, ¥, which is defined
by the following relation: '

L:=EXTX)= E‘{| ‘;g

and the covariance matrix of noise, I:

f r Cll Clﬂ
Xy X =
1X, an} HC“ On

(4.9)

0

Y= EETE) = E{ T
&

0 0
peiy=|o &0 (.10
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it 1s possible to define the modified Frisch scheme.

4.1. BASIC ASSUMPTIONS — THE MODIFIED FRISCH SCHEME

The basic assumptions to be satisfied by the series analyzed

X =Xy Xof|,
and by their covariance matrix
Cu Cr2 -
§ Ve 4.11
‘ Cu Ca _—
are:
ASSUMPTION 1: cor(¥) = 0. (4.12)
ASSUMPTION 2: Noise s additive.
X=X+E=|X1 Xof|+]I0 &]|- (4.13)

where: X is the matrix X after noise elimination, and £ the noise matrix.

Only the data in X5 are assumed to be noisy.

ASSUMPTION 3: The columns of the pure noise maitriz, £, or more precisely the
columns of submatriz £, are independent of (uncorrelated with) the columns of
the matriz of accurate data X.

As a consequence of assumptions 2 and 3 we have:
Y=Y+%

where: ¥ is the matrix of covariance of series X and £ the noise covariance matrix
£:
0 HO

.

£=| | (4.14)

o

ASSUMPTION 4: The noise covariance matriz, ¥, s a nonnegative definite (NND)
diagonal matriz.

White noise 1s assumed.

The problem of finding all possible solutions that satisfy the modified Frisch
scheme I can be defined in the noise space and solution space, analogously to the
general case considered 1n Section 2.

4.1.1. Problem Formulation in Noise Space

An n x n symmetrical, PD matrix 1s given:

Cii Ciz]

2=
Car Ca22
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whose:
cor(¥X) = 0.
The problem is to find all diagonal, NND matrices
=10 cl
such that:
. E=E~-1,

2. ¥ is NND, and

3. cor(¥) is maximum.
A vector a 1s a solution vector if it satisfies the following relation:

Ea=(Z-X)a=0.

4.1.2. Problem formulation in solution space

An n x n symmetrical, PD matrix is given:

$ Cii Crz
Car  Cas
where:
cor(X) = 0.
Find all vectors a such that: .

1. There exists a NND diagonal matrix

$ 0 ..,0
I 0 Cal’
for which: i
o=l a,

2. L =X —Y%is NND, and

-~

3. cor(X) is maximum.

The original problem of finding the linear relation can be generalized for the
case of k linear relations in the following way:

YA =(2-%)4, (4.15)

where: A 1s an n x k matrix of parameters of ¥ (k < n) linear relations.
As the following holds for solutions A:

LA =0. (4.15a)
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It follows that

A =%A (4.15b)
or, written in a different form:
Cni Chg Ay 0 0 Ay
ul_ : 2 4.16
Cor Coalf || A2 0 Ca| || A2 (4.16)

The relation: )
Ci11A; +Ci1242 =0

gives:
A = —=C[,' C124,. (4.17)
By including this equation in the following
Ca1A1 + CaAg = Cap A, (4.18)
we obtain:
(Caz — C1C' C12) Az = CagAs. (4.19)

The potential solutions of the problem analyzed, finding the linear dependence
between the series, some of which are noisy and the remaining are noiseless, must
satisfy the above-given system of equations.

5. IMPORTANT SPECIAL SOLUTIONS
WITHIN THE MODIFIED FRISCH SCHEME

This Section gives the analysis of special solutions from the set defined by
the modified Frisch scheme which are of importance for the simultaneous estima-
tion of several dependent variables as a function of multiple independent variables.
Attention 1s focussed on the solutions that:

(a) maximize the correlation measure without normalization

(b) minimize the prediction error of unnormalized variables

(¢) maximize the normalized correlation measure (canonical correlation)

(d) maximize the explained variance.

The results of this Section are supposed to provide a background for developing
a noniterative algorithm for modeling of both scalar and multivariable time series.

5.1. THE OPTIMAL SoLUTION WITH RESPECT TO MAXIMIZING
THE UNWEIGHTED CORRELATION MEASURE (PRINCIPAL COMPONENTS Cj2)

The principal components (), represent the solution, within the modified
Frisch scheme, which maximizes the unnormalized measure of correlation between
the estimates of dependent and independent variables.

Determining the parameters of the relaxation between the dependent and in-
dependent variables by using the method of principal components Cy2 reduces to
solving the following optimization problem:

maximize ||E(ATXT X,)|I%



2006 D. Radojevi¢

subject to the constraints from the modified Frisch scheme and:
ATA = L. (5.1)
Since: ) 2 ;
IE(ATXT X))l = |E(AT Ca)llp = tr Ay CraCan As. (5.2)

The solution of the optimization problem is obtained by applying the si_ngtjlla.r
value decomposition off crosscovariance matrix C'j» and determining the principal
components Uy, [8]. "

Ci2 = USVT = U, S VT + U,8, VT, (5.3)
where the following relations hold:
Ulv, = I (5.4a)
Vivi = I. (5.4b)
The solution of the optimization problem is:
A =U, (5.9)
Ay = —(C91C12) "' C C11 UL (5.6)

The linear relation based on the principal components Cy; reads.
X?(C2ICI2)_IC‘21011U1 = X1U;.

The solution obtained in this way is not optimal with respect to the prediction,
because the dependent variable has not been normahzed and the result 1s affected
by the relative differences in the variances of dependent variables.

5.2. THE OPTIMAL SoLuTioN WITH RESPECT TO MINIMIZING
THE PREDICTION ERROR FOR UNWEIGHTED VARIABLES

The directions of the minimum prediction error are the solution of the problem
of minimizing the total prediction error for the unnormalized independent variables.

minimize ||E(X;A1 + XgAg)Hi
subject to the constraints from the Frisch scheme and:
AT Ay = Iy, (5.7)
Since:
IE(X1 AL + X2 A2)||7 = || E(£242) |5
= tr A] Ca3A;
= tr A;F(CQQ o Cmcl_llclg)ﬂg (58)
the solution of the optimization problem is obtained by applying the singular value
decomposition of (Ca3 — C2)Cy1Cy2)~" and determining the principal components

{fll
(Caz — Cu1C11Cia2) "' = USWT = U, SUT + U, SIUT, (5.9)
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where the following relations hold:

vru, =1, (5.10)

The solution of the optimization problem is:
A, = Uy (5.11)
Al - —_Cl_llclgUz. (512)

The linear relation based on the principal components (Cays — Cy1C1Ci2) 7}, e
on the components of the minimum prediction error reads:

XUy = X,C' CraUy.

The solution obtained in this way is not optimal with respect to the prediction
because the variables have not been normalized by the constraints introduced.

95.3. THE OPTIMAL SoOLUTION WITH RESPECT TO MAXIMIZING
THE UNWEIGHTED CORRELATION MEASURE

The linear relations obtained by applying the canonical correlation analysis
[9], [10], represent the solution within the Frisch scheme which has the property of
maximizing the information contained in the estimate of dependent variables taken
from the set of independent variables.

Determining the parameters of the linear relation by using the method of
canonical correlation analysis reduces formally to the following optimization prob-
lem:

maximize ||E(ATXTX2C52)|| -

subject to the constraints from the Frisch scheme and:
ATC11 Ay = IL. (5.13)
Since:
IE(ATXT X2C50 )| = I|AT C12C3 *ll p = 1 ATCL2CR Cn A (5.14)

the solution of the optimization problem is obtained by determining the principal

components of expression C’flu 20;26'2_-__,” 2.
CM2C1CL2 = USVT = 1S,V + UaSa VT, (5.15)
where the following relations hold:
vt = I (5.16a)
Viiv, = L. (5.16b)

The solution of the optimization problem 1s:

4 = ¢, (5.17)
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Al = -—(Gglclz)_lCmC:{zUI. (5.18J
The linear relation based on the canonical correlation analysis reads:
ffz(CmClz)_lClellfol = XU

The solution obtained in this way is not optimal from the prediction stapdpoint
because the treatment of dependent and independent variables is symmetrical.

NOTE: the same result is obtained with the following problem statement minimize
minimize ||E(X,A; + X34,)||%

subject to the constraints from the Frisch scheme and:

AlCy 4, = Iy or (5.19)
AT C\ A = 1. (5.20)

5.4. THE OPTIMAL SOLUTION WITH RESPECT TO MAXIMIZING
THE EXPLAINED PART OF THE VARIANCE OF DEPENDENT VARIABLES
(THE UNWEIGHTED PRINCIPAL COMPONENTS)

The unweighted principal components are the solutions within the modified
Frisch scheme having the property of maximizing the explained part of the variance
In the set of dependent variables on the basis of normalized independent variables.

Determining the linear relation by using the method of unweighted principal
components reduces formally to solving the following optimization problem, [10]
and [11]:

maximize ||E(ATXTX,)|%

subject to the constraints from the Frisch scheme and:
A'ITCu}h = T (5.21)

Since:

2
IE(ATXT Xo)l[p = | E(ATCro)ll = tr ATC12C1 4, (5.22)

the solution of the optimization problem is obtained by determining the principal
components of expression C;:ICI"IICu, by applying the SVD:

CuCiy Ci2 = US*UT = U, STUT + U,S3U7. . (5.93)

where the following relation holds:

ULUy = I4. (5.24)

The solution of the optimization problem is:

A1 = =CJ' Cpal; (5.25)
Ay = Uy, (5.26)
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The linear relation based on the principal components of the explained part of
variance reads:

XU = X1C5 Coalhy.

The solution obtained by employing the method of the unweighted principal com-
ponents of the matrix of explained part of variance is optimal from the prediction

standpoint. This solution represents a basis of a future algorithm for time-series
modelling by a noniterative method.

5.5. COMMENTS

We have analyzed the solutions of interest for the purposes of prediction from
a set of solutions defined by the modified Frisch scheme which are obtained by
optimization with respect to the above-stated criteria.

It can be seen that the solution for the analyzed criterion functions and con-
straints differ from one another. The method of the unweighted principal compo-
nents (the principal components of matrix of the explained variance of dependent
variables) is the solution representing a background for implementing a noniterative
algorithm for time-series modelling.

6. CONCLUSION

This paper presents a modification to the Frisch scheme made for the following
special case: some series of numbers are noiseless — independent variables; and the
remaining are noisy — dependent variables. Special results from the set defined
by modified Frisch scheme, which represent potential solution for prediction are
analysed. The result obtained on unweighted principal components of the matrix
of covariance of explained part of variance of dependent variables, represent the
best solution for prediction.

The results obtained represent a basis of a new method for 1dentifying simulta-
neously the structure and parameter values of a model intended for the prediction of
vectorial stationary time series. The new method will be described in a forthcoming

paper.
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